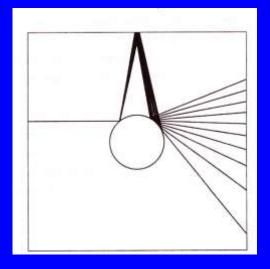


Г.Ю Ризниченко



Динамический

Xaoc

Фото Роберта Гендлера. Созвездие стрельца

Бесформенная совокупность материи и пространства (Противоположно Космосу – упорядоченности). Все рождается из Хаоса (древнегреческое).

• Беспорядок, неразбериха, смешение. Значение появилось в раннехристианские времена

Динамический хаос. Основные понятия

- Основные понятия теории динамических систем.
- Предельные множества. Аттракторы.
- Странные аттракторы. Динамический хаос.
- Размерность странных аттракторов. Фракталы

CHAOS

Weather

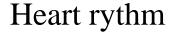
Э.Лоренц

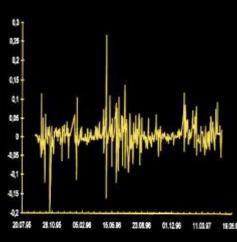
Chemical Kinetics

Александр Юрьевич Лоскутов 1960-2011

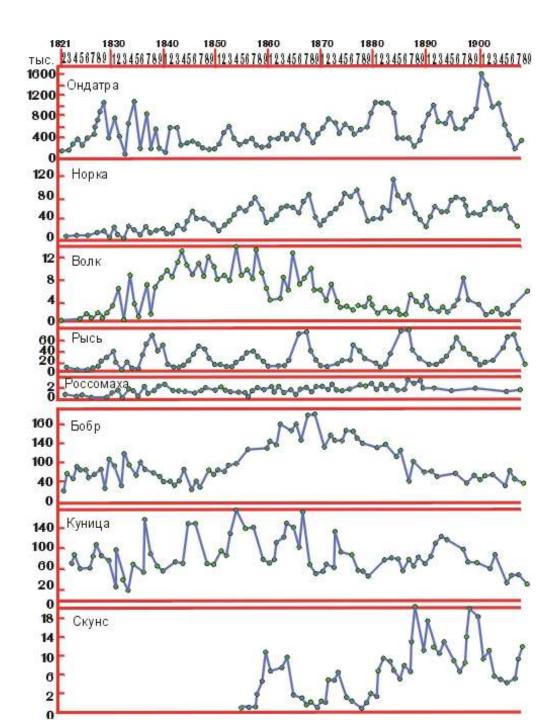
BZ-reaction

Белоусов и Жаботинский



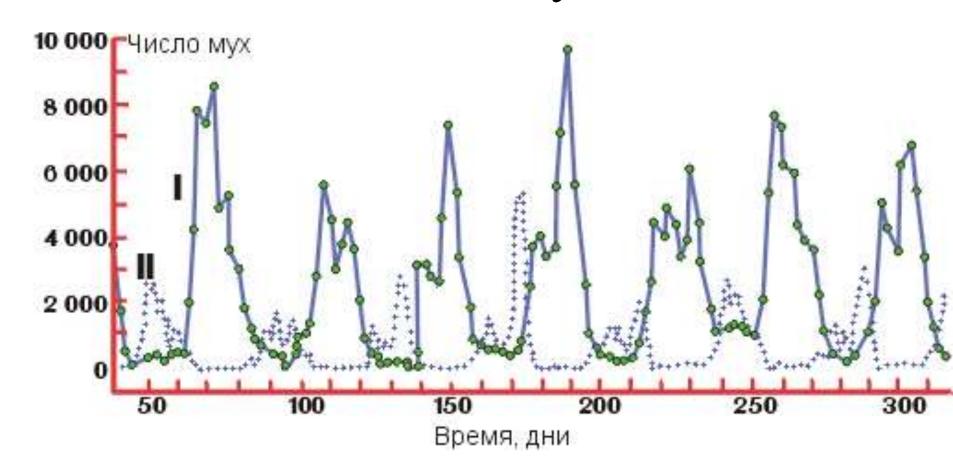


Биржевые индексы



Данные по заготовкам компании Гудзонова Залива

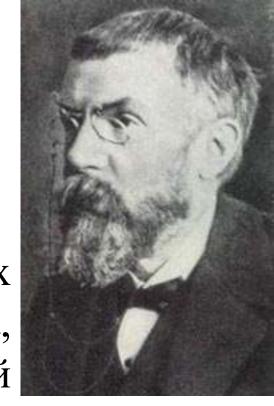
Динамика численности плодовой мушки



Анри Пуанкаре –

великий французский математик в книге «Наука и метод» в 1908 г. писал:

неустойчивых системах «В совершенно ничтожная причина, ускользающая от нас по своей малости, вызывает значительные действия, которые мы состоянии предугадать... Предсказание становится невозможным, мы имеет перед собой явление случайное».



Лоренц

Lorenz EN (1963) Deterministic non-periodic flow. J.Atmos. Sci: 20, 131-141

Конвекция в подогреваемом снизу слое жидкости, модель водяного колеса, одномодовый лазер, диссипативный осциллятор с инерционным возбуждением

$$\dot{x} = \sigma y - \sigma x,$$

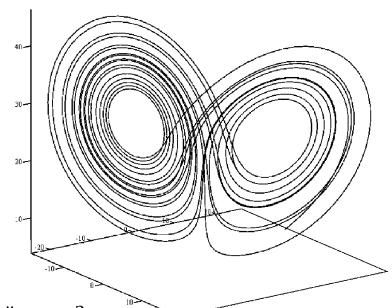
$$\dot{y} = rx - y - xz,$$

$$\dot{z} = xy - bz.$$

$$r=28, s=10,$$

$$b=8/3$$

Хаотические траектории в системе Лоренца



•Одномодовый лазер. Здесь x — амилитуда волн в резонаторе лазера, y — поляризация, z — инверсия населённостей энергетических уровней, b и σ — отношения коэффициентов релаксации инверсии и поля к коэффициенту

релаксации поляризации, г — интенсивность накачки.

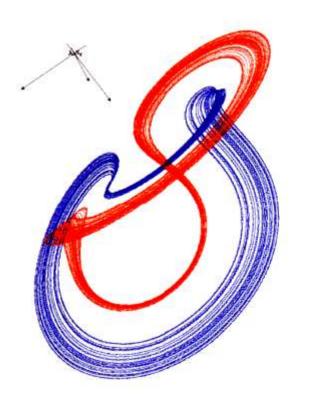
Система Лоренца 1

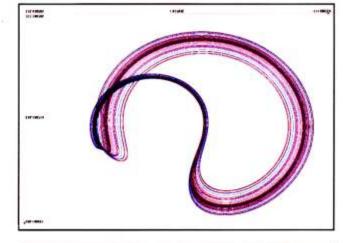
$$\dot{x} = \sigma y - \sigma x,$$

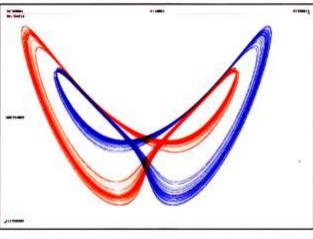
$$\dot{y} = rx - y - xz,$$

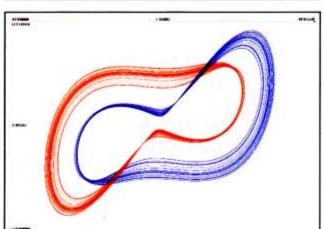
$$\dot{z} = xy - bz.$$

$$r=28, s=10, b=8/3$$

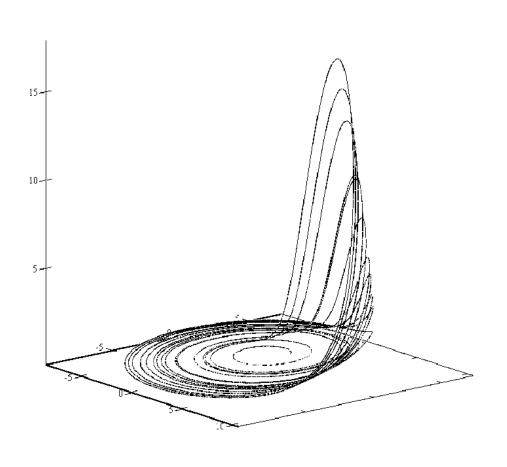








Хаос в непрерывной системе. Аттрактор Ресслера



$$\dot{x} = -(x + y),$$

$$\dot{y} = x + \alpha y,$$

$$\dot{z} = \alpha + z(x - \mu).$$

Хаотическое поведение возникает

- □ не из-за внешних источников шума (их нет в системе Лоренца);
 - не из-за бесконечного количества
 степеней свободы (их три в системе Лоренца);
- не из-за неопределенности, связанной с квантовой механикой (рассматриваемые системы чисто классические).

Настоящая причина нерегулярности определяется свойством нелинейных систем экспоненциально быстро разводить первоначально близкие траектории в ограниченной области фазового пространства

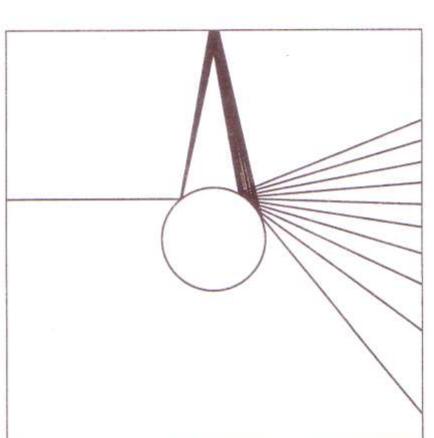
Разбегание траектопий

Потребность в определенности – естественная биологическая потребность человека, но она же – порок мышления

Нассим

Под знаком непредсказуемости

Николас



Хаотическое поведение означает

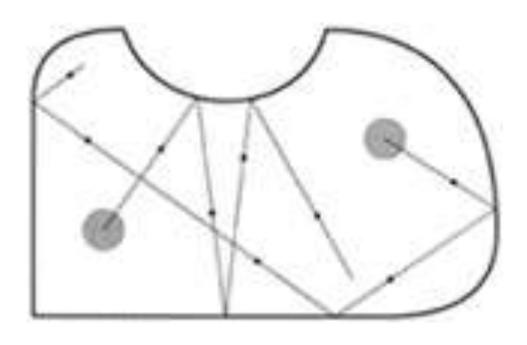
- неустойчивость фазовых траекторий,
- рост малого начального возмущения во времени,
- перемешивание элементов фазового объема, и, как следствие,
- непредсказуемость поведения системы на больших временах

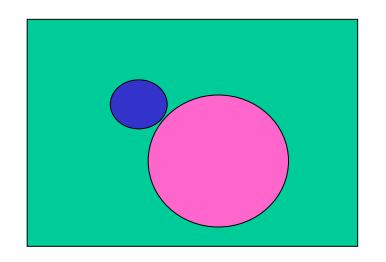
Яков Григорьевич Синай

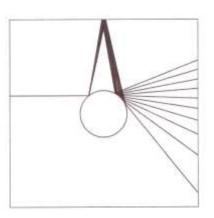
Лауреат Абелевской премии март 2014 г.

Профессор Мехмата МГУ. Работы по теории динамических систем, статистической физике

Биллиард Синая







НЕЛИНЕЙНОСТЬ

• является необходимым (но не достаточным) условием существования динамического (детерминированного) хаоса

Линейные дифференциальные и разностные уравнения не приводят к хаосу.

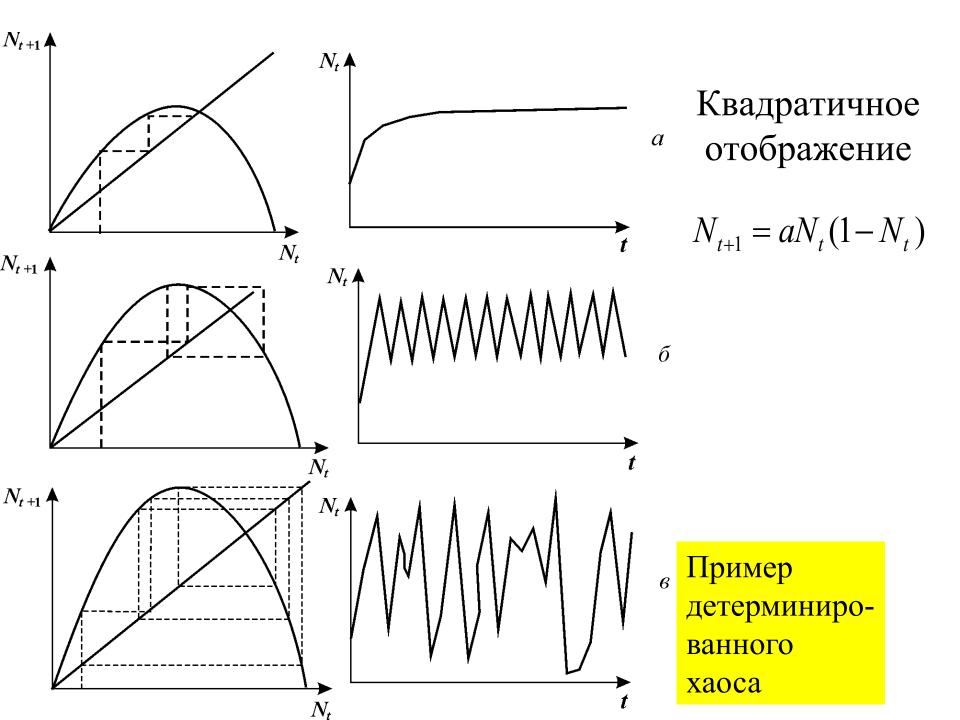
Детерминированные системы

однозначно задан закон изменения системы с течением времени.

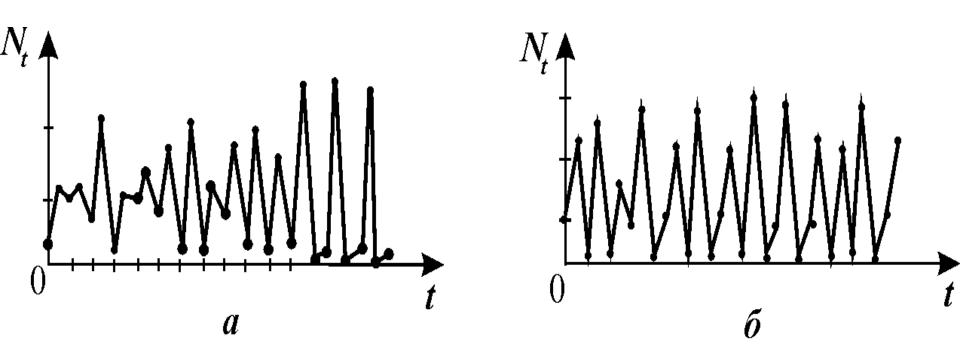
Детерминированность означает, что зависимость будущего состояния x(t) можно записать в виде:

$$x(t) = F[x(t_0)].$$

Здесь F — детерминированный закон (оператор), который осуществляет строго однозначное преобразование начального состояния $x(t_0)$ в будущее состояние x(t) для любого $t > t_0$.



$$N_{t+1} = N_t \exp \left\{ r(1 - \frac{N_t}{K}) \right\}$$
 Дискретный аналог логистического уравнения



При $r > r_c = 3,102$ решение зависит от начальных условий существуют трехточечные циклы и квазистохастические решения.

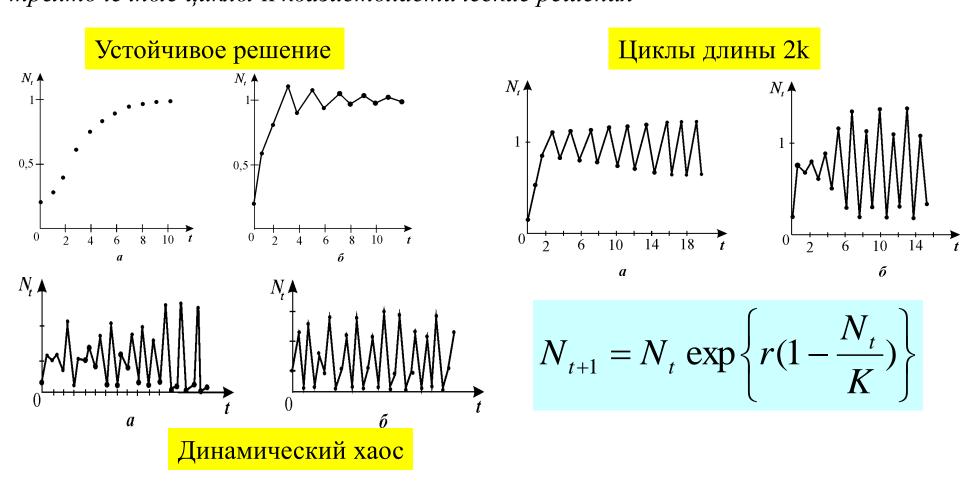
Pавновесие устойчиво, если 0 < r < 2,

решение монотонно при 0 < r < 1 и представляет собой затухающие колебания при 1 < r < 2

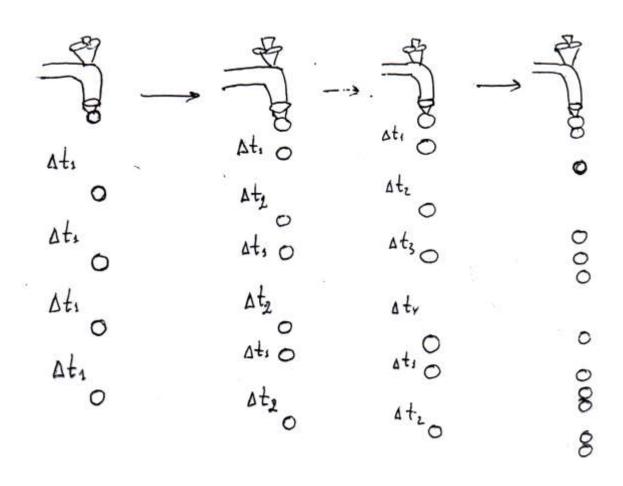
при $2 < r = r_2 < 2,526 - двухточечные циклы;$

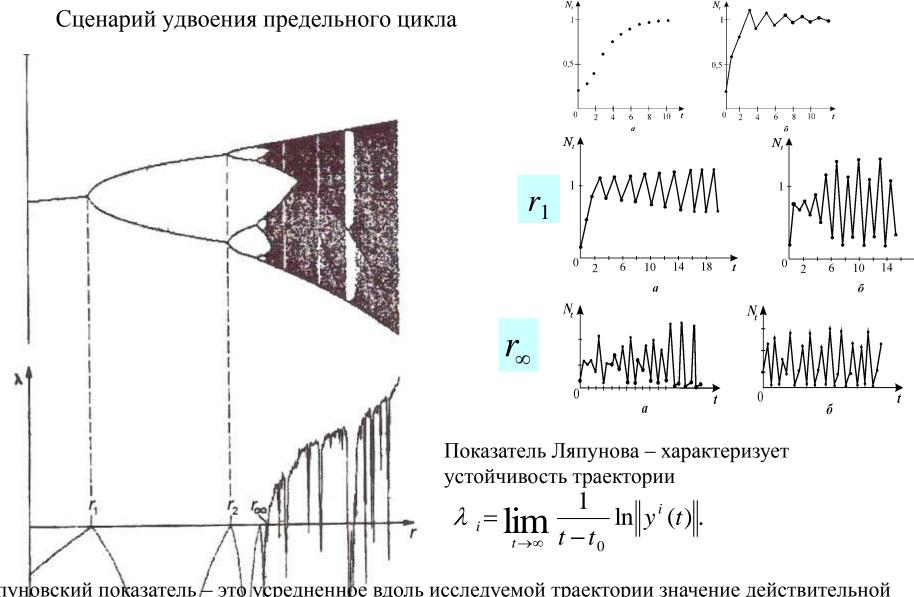
при $r_2 < r < r_c$ появляются циклы длины 4,8,16,...,2k

при $r > r_c$ =3,102 решение зависит от начальных условий. Существуют *трехточечные циклы* и *квазистохастические решения*



Переход к хаосу через удвоение периода





Ляпуновский показатель — это усредненное вдоль исследуемой траектории значение действительной части собственного значения ρi матрицы линеаризации. Устойчивость траектории по Ляпунову означает, что произвольное начальное возмущение $y(t^*)$ в среднем вдоль траектории не возрастает. Для этого необходимо и достаточно, чтобы спектр ляпуновских показателей λi не содержал положительных показателей.

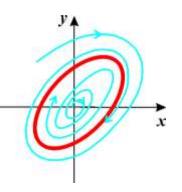
Устойчивость и неустойчивость движения

Устойчивость по Ляпунову

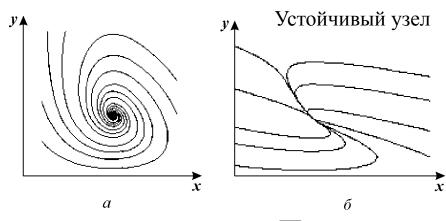
Для устойчивого по Ляпунову движения малое начальное возмущение не нарастает. Т.е. движение устойчиво по Ляпунову, если для любого $\varepsilon > 0$ можно указать такое $\delta(\varepsilon)$, что для всякого движения $\mathbf{x}(t)$, для которого $||\mathbf{x}(t) - \mathbf{x}^*(t)|| < \delta$, при всех $t > t_0$ выполняется неравенство: $||\mathbf{x}(t) - \mathbf{x}^*(t)|| < \varepsilon$.

Знак | | | означает норму (длину) вектора.

Устойчивость по Пуассону

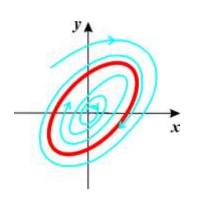


предполагает, что соответствующая фазовая траектория при $t \rightarrow \infty$ не покидает ограниченной области фазового пространства. Находясь в этой области бесконечно долго, она неизбежно будет возвращаться в сколь угодно малую окрестность начальной точки. Времена возврата могут соответствовать периоду или квазипериоду при регулярном движении, а могут представлять собой случайную последовательность, если решение отвечает режиму динамического хаоса.



Аттрактор.

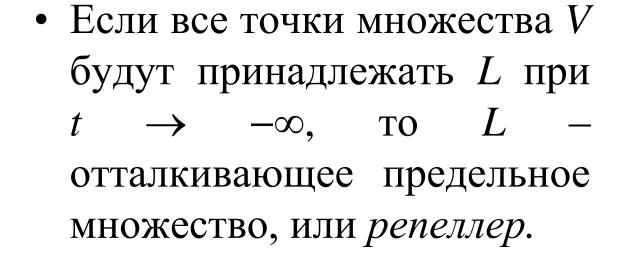
Устойчивый фокус



Устойчивый предельный цикл

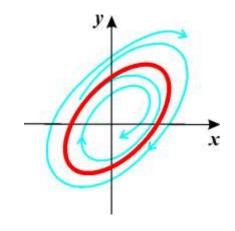
• Если все точки множества Vбудут принадлежать L при $t \to +\infty$, то L- притягивающеепредельное множество, или аттрактор. Тогда *V – бассейн* притяжения аттрактора (подобно бассейну реки территории, с которой она собирает свои воды).

Репеллер



Неустойчивый узел,

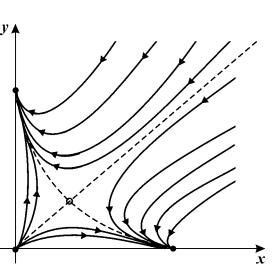
Неустойчивый фокус



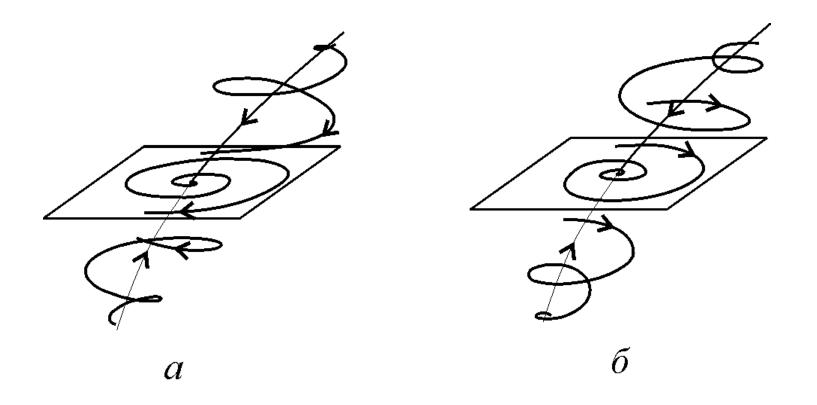
Неустойчивый предельный цикл

Седловое множество

• Если множество V состоит из двух подмножеств $V=W^s \cup W^u$, причем точки, принадлежащие W^s , стремятся к L в прямом времени, а точки, принадлежащие W^u , стремятся к L в обратном времени, тогда L называется седловым предельным множеством $(или \ cedлом)$. Множества W^s и W^u устойчивое и неустойчивое многообразия седла.



Седло-фокусы



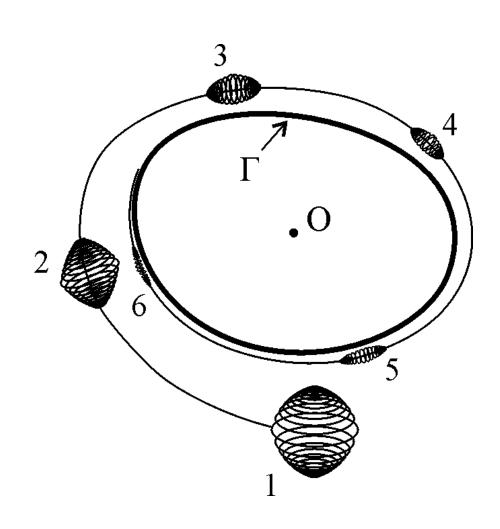
Седло-фокусы в пространстве N = 3.

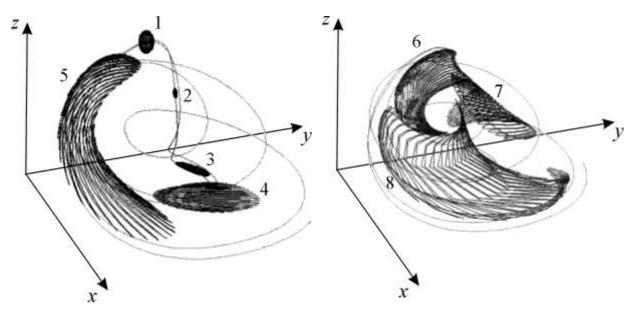
a) p_1 — действительно и отрицательно, $p_{2,3}$ — комплексно сопряженные, Re $p_{2,3}$ > 0; δ) p_1 — действительно и положительно, $p_{2,3}$ — комплексно сопряженные, Re $p_{2,3}$ < 0

Диссипативные системы

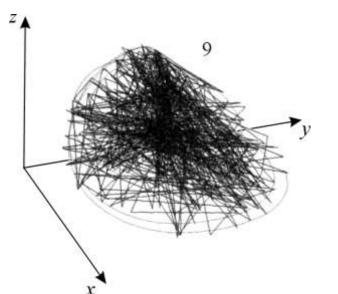
Существование аттрактора в диссипативной системе связано со свойством сжатия элемента фазового объема под действием оператора эволюции.

Сжатие элемента фазового пространства радиуса є при «наматывании» траектории на устойчивый предельный цикл -траектория Г.





Эволюция малого первоначального фазового объема во времени в динамической системе (Анищенко и др., 1999).



$$\dot{x} = mx + y - xz,$$
 $\dot{y} = -x,$

$$\dot{z} = -gz + gI(x)x^{2}, \quad I = \begin{cases} 1, & x > 0, \\ 0, & x \le 0. \end{cases}$$

Фракталы – самоподобные множества

Benoît Mandelbrot 1924-2009

Бенуа Мальдельброт. 1924-2010. Французский и американский математик. Придумал понятие «фрактал» - "Fractus" (лат) — сломанный, разбитый.

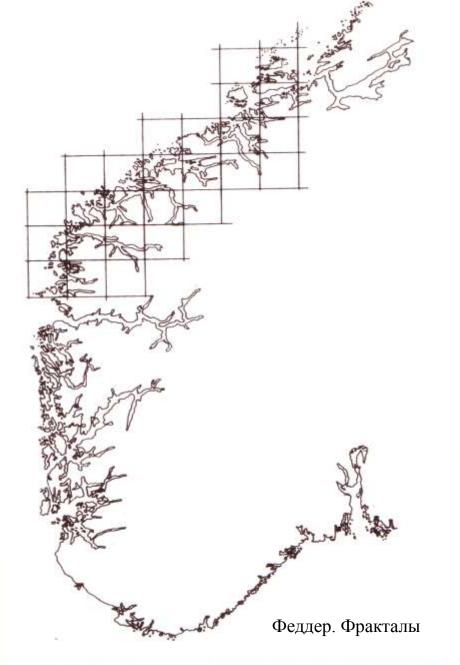
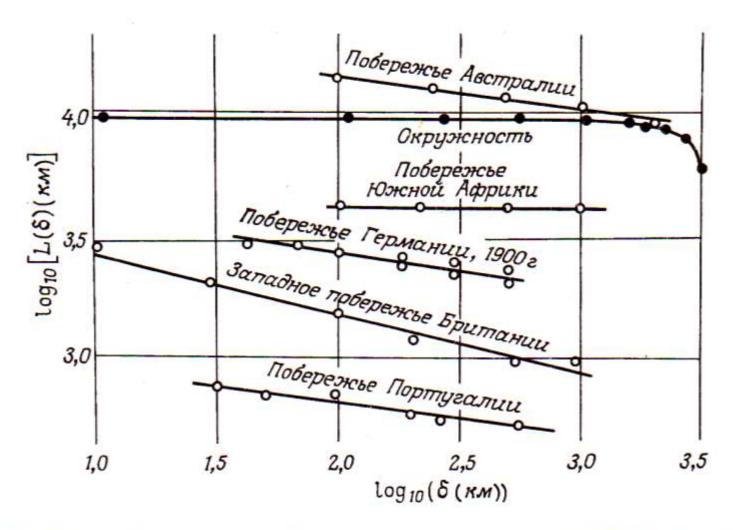


РИС. 2.1. Побережье южной части Норвегии. Береговая линия перечерчена из географического атласа и представлена в цифровом виде с помощью растра, состоящего примерно из 1800×1200 ячеек. Изображенная вверху квадратная решетка имеет шаг $\delta \sim 50$ км.

Б.Мандельброт. Фракталы и хаос. Множество Мандельброта и другие чудеса. Изд. РХД 2009

The Mandelbrot set and beyond. Springer

Длина береговых линий



2.3. Длина береговых линий как функция выбранного шага δ (км) [134].

Определение Фрактала

- Фракталом называется структура, состоящая из частей, которые в какомто смысле подобны целому.
- Фракталом называется множество, размерность Хаусдорфа-Безиковича которого строго больше его топологической размерности.
- Фракталы множества точек, вложенные в пространство
- Топологическая размерность линии -1, поверхности -2, шара -3

Фракталы. Размерность

СТЬ

Длина береговой линии стремится к величине

$$L(\delta) = a\delta^{1-D}$$

$$\delta \to 0 \qquad N(\delta) \sim 1/\delta^{D}$$

Хаусдо́рф Феликс (Hausdorff Felix, 1868-1942) —немецкий математик один из основоположников современной топологии.

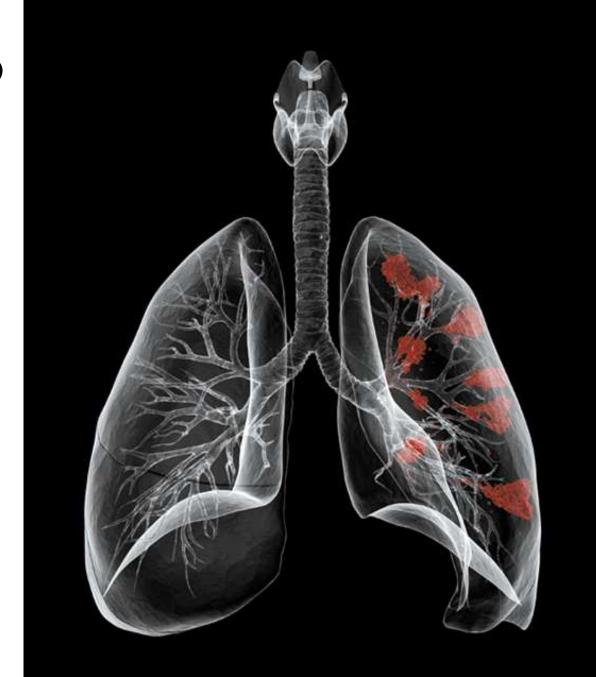
Писатель. Псевдоним Поль Монгре

Для обычной кривой множитель a равен количеству отрезков: $a=L_N$, а показатель D равен единице. Но для береговой линии Норвегии D ~ 1,52. Показатель D называется размерностью Хаусдорфа-Безиковича или фрактальной размерностью.

Альвеолы человеческого легкого

Оптическая микроскопия — 80 кв. м

Электронная микроскопия — 140 кв. м D=2,17

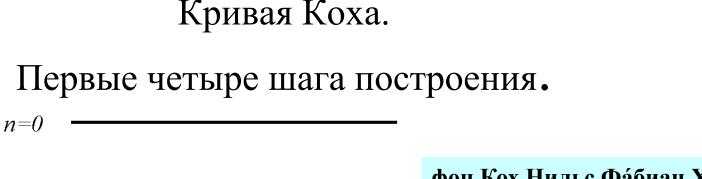


Мембраны

Субклеточные мембраны в клетках печени Внешние митохондриальные мембраны D=2,09 Внутренние митохондриальные мембраны D=2,53

Кривая Коха.

Первые четыре шага построения.



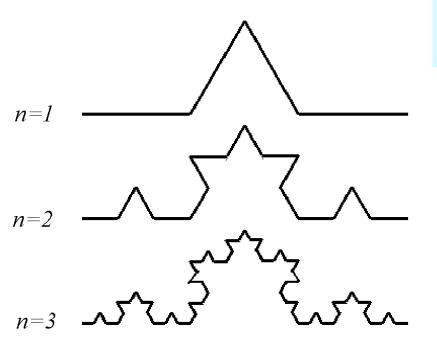
фон Кох Нильс Фабиан Хельге (1870-1924), шведский математик, автор основополагающих работ по теории чисел

Длина кривой 1-го поколения L(1/3) = 4/3. 4 звена, длина каждого – 1/3

Длина кривой 2-го поколения.

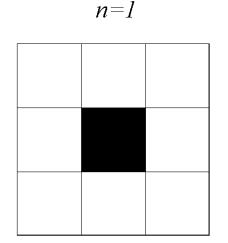
Число звеньев: $N=4^2=16$, длина каждого -1/9

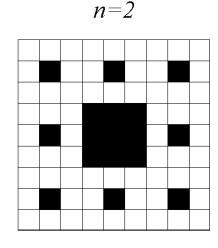
Длина каждого звена: $\delta = 3^{-n}$ $n=-\ln \delta/\ln 3$ $L(\delta) = (4/3)^n = \delta^{1-D}$ $D=\ln 4/\ln 3 \sim 1,2628$

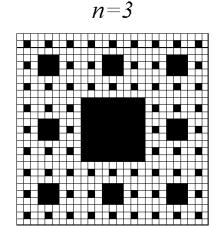


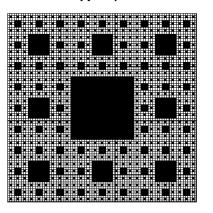
Построение ковра Серпинского. Начальный элемент — белый квадрат со стороной, равной 1. Из него вырезается черный квадрат, со стороной, равной 1/3. Далее из каждого белого квадрата вырезается снова черный квадрат, со стороной, равной 1/3 стороны белого квадрата. На рисунке показаны четыре поколения предфракталов.

Размерность подобия D=ln8/ln3=1,89...



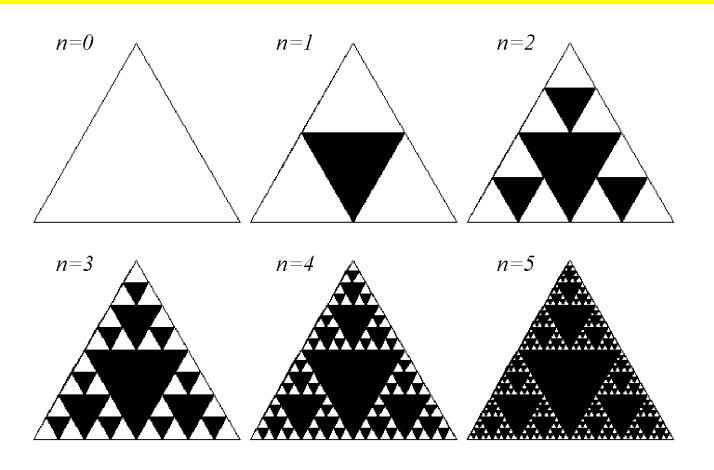






Вацлав Серпинский (1882-1969) –польский математик. Основные труды посвящены теории множеств. Теории чисел, топологии

Построение треугольной салфетки Серпинского. Начальный элемент — треугольник со всеми внутренними точками. Образующий элемент исключает из него центральный треугольник. На рисунке показаны пять поколений предфракталов. Фрактальное множество получается в пределе при бесконечно большом числе поколений и имеет фрактальную размерность D=ln3/ln2=1,58...



Канторово множество названо в честь великого математика Георга Кантора (1845-1918), открывшего его в 1883 г. Построение кривой Коха можно рассматривать как процесс добавления к отрезку все более мелких деталей. Построение канторова множества сводится к выбрасыванию из первоначального отрезка все более мелких отрезков

Хаотическое поведение демонстрируют

- Системы трех и более автономных нелинейных дифференциальных уравнений
- Системы двух **неавтономных** дифференциальных уравнений (периодическое воздействие на колебательную систему)
- Дискретные системы
- Системы с запаздыванием

\overline{V}_{in}

Glycolysis with periodic substrate input flux

$$\frac{d[F6P]}{dt} = \frac{d[PEP]}{dt} + \frac{d[ATP]}{dt}$$

$$= \overline{V}_{in} + A \sin \omega_{e} t - V_{PFK}$$

$$\frac{d[ADP]}{dt} = -\frac{d[ATP]}{dt} = V_{PFK} - V_{PK}$$

$$F6P - \text{fructose 6 phosphate}$$

PEP – phosphoenolpyruvate

$$\overline{V}_{\scriptscriptstyle in}$$
 - the mean input flux

 \mathcal{O}_{e} - frequency of the periodic input flux

$$A = \overline{V}_{in}$$

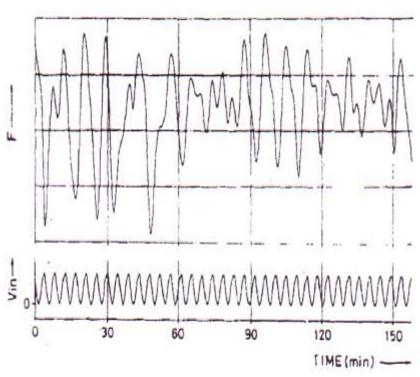


Fig. 2. Measured NADH fluorescence (upper curve) of yeast extract under sinusoidal glucose input flux (lower curve).

Подавление хаоса и управление хаосом

А.Ю.Лоскутов, А.С.Михайлов. Основы теории сложных систем

ИКИ-РХД, 2007

