ФИО проверяющего преподавателя:

№ Гр., Фамилия, Имя:

Здесь нужно напечатать номер вашей группы, вашу фамилию и имя

Параметры вашего варианта:

Здесь нужно вставить параметры вашего варианта из общей таблицы

$$b_1 =$$

$$c_1 =$$

$$d_1 =$$

Задание 1.
$$a_1 = b_1 = c_1 = d_1 = H(x_0, y_0) = (1,1)$$

Задание 2. $a_2 = b_2 = c_2 = d_2 =$

$$b_2 =$$

$$c_2 =$$

$$d_2$$
 =

Задание 3. *a* =

Представление чисел после вычислений (важно для проверки).

Окончательный вид всех вычисленных значений (координаты особой точки, действительные и мнимые значения корней характеристического уравнения, коэффициенты в уравнениях главных изоклин и сепаратрис и т.п.) представляйте в виде одной десятичной дроби, округляя до двух знаков после запятой.

Примеры **правильного** представления: $\lambda_1 = 3.45 + 2.43i$, y = -1.57x.

Примеры **НЕ**правильного представления: $\lambda_1 = 3.45 + i\sqrt{5.89}$, $y = -\frac{3.67}{2.34}x$.

Задание 1. max баллов = (2+2+2+1+2+3=12)

Проведите полное исследование системы линейных уравнений:

$$\begin{cases} \frac{dx}{dt} = a_1 \cdot x + b_1 \cdot y, \\ \frac{dy}{dt} = c_1 \cdot x + d_1 \cdot y. \end{cases}$$

1.1. Запишите характеристическое уравнение в предложенном виде через коэффициенты системы вашего варианта

Окончательный вид всех полученных чисел представляйте в виде **одной** десятичной дроби, округляя до двух знаков после запятой (вида 4.67, 7.23...).

Ответ:

 $\sigma =$

 $\Lambda =$

$$\lambda^2 - ($$
 $)\lambda + ($ $) = 0$

Решение: Решение можно напечатать здесь и/или сфотографировать (общее фото с решением Задания 1 вставить ниже)

1.2. Найдите характеристические числа и определите тип особой точки:

Окончательный вид всех полученных чисел представляйте в виде *одной* десятичной дроби, округляя до двух знаков после запятой (вида 4.67, 7.23...).

Ответ:

 $\lambda_1 =$

$$\lambda_2 =$$

Тип особой точки:

Решение: Решение можно напечатать здесь и/или сфотографировать (общее фото с с решением Задания 1 вставить ниже)

1.3. Запишите уравнения главных изоклин.

Окончательный вид всех полученных чисел представляйте в виде **одной** десятичной дроби, округляя до двух знаков после запятой (вида 4.67, 7.23...).

Ответ:

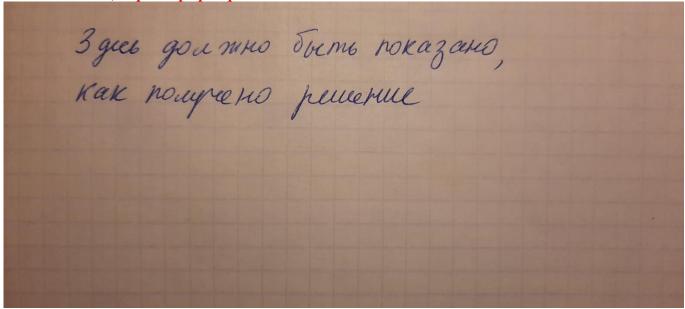
Уравнение изоклины горизонтальных касательных: у =

Уравнение изоклины вертикальных касательных: у =

Решение: Решение можно напечатать здесь и/или сфотографировать (общее фото с решением Задания 1 вставить ниже)

1.4. Определите направление траектории в точке $H(x_0, y_0)$

Окончательный вид всех полученных чисел представляйте в виде *одной* десятичной дроби, округляя до двух знаков после запятой (вида 4.67, 7.23...).


Ответ:

х увеличивается/уменьшается, потому что

у увеличивается/уменьшается, потому что

Решение: Решение можно напечатать здесь и/или сфотографировать (общее фото с решением Задания 1 вставить ниже)

Место для общей фотографии решений Задания 1

1.5. Выполните следующие построения: а) постройте главные изоклины; б) укажите на них касательные к траекториям; в) отметьте на фазовой плоскости точку $H(x_0, y_0)$ и проведите через нее траекторию; г) постройте фазовый портрет в окрестности стационарного состояния с учетом главных изоклин; д) укажите направление *всех* изображенных траекторий.

Построение должно быть выполнено вручную.

1.6. Постройте соответствующие кинетические кривые x(t) и y(t) с начальными условиями в точке $H(x_0, y_0)$.

Построение должно быть выполнено вручную.

Место для фотографий фазового и кинетического портретов Задания 1

Здав доммено быми еромо

фазового портрете.

Здие домжно быми еромо
Кинемы ческого портрема

Задание 2. max баллов = (2+2+2+1+3=10)

Заданная система линейных уравнений имеет особую точку типа «седло».

$$\begin{cases} \frac{dx}{dt} = a_2 \cdot x + b_2 \cdot y, \\ \frac{dy}{dt} = c_2 \cdot x + d_2 \cdot y. \end{cases}$$

2.1. Запишите характеристическое уравнение через коэффициенты системы:

Окончательный вид всех полученных чисел представляйте в виде **одной** десятичной дроби, округляя до двух знаков после запятой (вида 4.67, 7.23...).

Ответ:

 $\sigma =$

 $\Delta =$

$$\lambda^2 - ()\lambda + () = 0$$

Решение: Решение можно напечатать здесь и/или сфотографировать (общее фото с решением Задания 2 вставить ниже)

2.2. Найдите характеристические числа:

Окончательный вид всех полученных чисел представляйте в виде одной десятичной дроби, округляя до двух знаков после запятой (вида 4.67, 7.23...).

Ответ:

 $\lambda_1 =$

 $\lambda_2 =$

Решение: Решение можно напечатать здесь и/или сфотографировать (общее фото с решением Задания 2 вставить ниже)

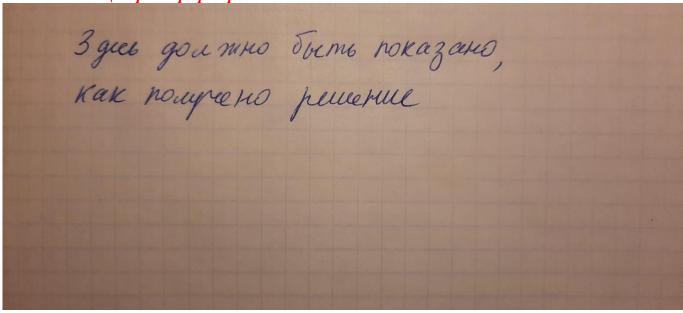
2.3. Запишите уравнения сепаратрис седла.

Окончательный вид всех полученных чисел представляйте в виде **одной** десятичной дроби, округляя до двух знаков после запятой (вида 4.67, 7.23...).

Ответ:

Уравнение сепаратрисы, соответствующей λ_1 : y =

Уравнение сепаратрисы, соответствующей λ_2 : y =


Решение: Решение можно напечатать здесь и/или сфотографировать (общее фото с решением Задания 2 вставить ниже)

5

2.4. Определите направление траекторий, идущих вдоль сепаратрис.

Решение: Решение можно напечатать здесь и/или сфотографировать (общее фото с решением Задания 2 вставить ниже)

Место для общей фотографии решений Задания 2

2.5. Выполните следующие построения: а) постройте сепаратрисы; б) укажите направление каждого из 4-х лучей сепаратрис; в) постройте фазовый портрет в окрестности стационарного состояния с учетом направления сепаратрис; г) укажите направление *всех* изображенных траекторий.

Построение должно быть выполнено вручную.

Место для фотографии фазового портрета Задания 2

Здав дом пеко были срото

фазового портретег

Задание 3. max баллов = (1+1+3+3+1+1+2=12)

Исследуйте модель взаимодействия двух видов в зависимости от параметра b (b > 0).

$$\begin{cases} \frac{dx}{dt} = P(x, y, b), & P(x, y, b) = x \cdot y - x, \\ \frac{dy}{dt} = Q(x, y, b), & Q(x, y, b) = b + a \cdot y^2 - x \cdot y. \end{cases}$$

3.1. Найдите неотрицательные стационарные состояния системы:

Ответ:

$$\overline{x} = \overline{y} =$$

Решение: Решение можно напечатать и/или сфотографировать (общее фото с решением Задания 3 вставить ниже)

3.2. Запишите коэффициенты линеаризации:

Ответ:

$$P'_{x}(\overline{x}, \overline{y}) =$$

$$P'_{v}(\overline{x}, \overline{y}) =$$

$$Q'_{x}(\overline{x},\overline{y}) =$$

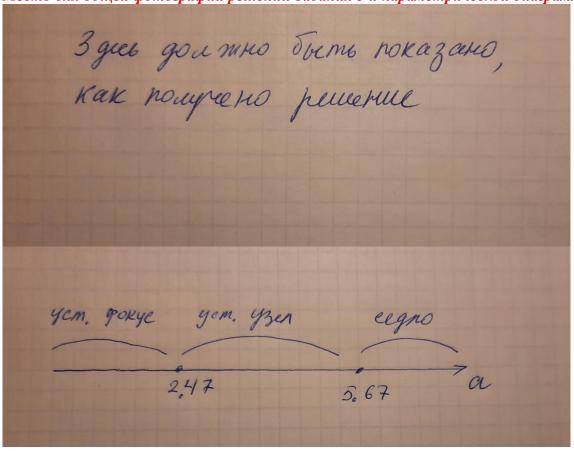
$$Q'_{y}(\overline{x},\overline{y}) =$$

Решение: Решение можно напечатать и/или сфотографировать (общее фото с решением Задания 3 вставить ниже)

3.3. Запишите следующие выражения:

Ответ:

$$\sigma =$$


$$\Delta =$$

$$\sigma^2 - 4\Lambda =$$

Решение: Решение можно напечатать и/или сфотографировать (общее фото с решением Задания 3 вставить ниже)

3.4. Определите тип стационарного состояния в зависимости от параметра b. Ответ представьте в виде параметрической диаграммы.

Место для общей фотографии решений Задания 3 и параметрической диаграммы

3.5. Являются ли найденные переходы от одного типа состояния к другому бифуркациями? **Окончательный** вид всех полученных чисел представляйте в виде **одной** десятичной дроби, округляя до двух знаков после запятой (вида 4.67, 7.23...).

Ответ нужно напечатать и удалить ненужное

Ответ:

Переход в точке () является/не является бифуркацией. Переход в точке () является/не является бифуркацией. Переход в точке () является/не является бифуркацией.

3.6. Какая переменная описывает поведение хищника, какая – поведение жертвы?

В ответе нужно удалить ненужное

Ответ:

x — жертва/хищник

у – жертва/хищник

3.7. Что описывают следующие выражения в уравнениях модели в терминах взаимодействия видов?

Ответ нужно напечатать

Ответ:

- $(x \cdot y) -$

- $(x \cdot y)$ (-x) (b) $(a \cdot y^2) (-x \cdot y) -$