Основы математического моделирования
В этом разделе курса лекций «Математические модели в биологии» рассматриваются базовые понятия математического моделирования. На примере простейших систем анализируются основные закономерности их поведения. Основное внимание уделяется не самой биологической системе, но тем подходам, которые использованы для создания её модели.
Смотри также:
Модели и моделирование. Классификация моделей. Качественные (базовые) модели. Имитационные модели конкретных биологических систем. Математический аппарат. Понятие переменных и параметров. Стационарное состояние и его устойчивость. Компьютерные программы. Иерархия масштабов и времен в биологических системах. Регуляторные сети.
Понятие решения автономного дифференциального уравнения. Стационарное состояние и его устойчивость. Модели роста популяции. Непрерывные и дискретные модели. Модель экспоненциального роста. Модель логистического роста. Модель с наименьшей критической численностью. Вероятностные модели.
Исследование устойчивости стационарных состояний. Типы динамического поведения: монотонное изменение, мультистационарность, колебания. Понятие фазовой плоскости. Модели Лотки (химическая реакция) и Вольтерра (взаимодействие видов).
Теорема Тихонова. Вывод уравнения Михаэлиса-Ментен. Применение метода квазистационарных концентраций.
Модели отбора. Применение метода квазистационарных концентраций. Модели переключений в биологических системах. Триггер. Модель синтеза двух ферментов Жакоба и Моно.
Понятие предельного цикла и автоколебаний. Автокатализ. Типы обратной связи. Примеры. Брюсселятор. Гликолиз. Модели клеточного цикла.
Понятие странного аттрактора. Периодические воздействия и стохастические факторы. Нерегулярные колебания в гликолизе. Хаотическая динамика в сообществах видов.
Нелинейные взаимодействия и процессы переноса в биологических системах и их роль в формировании пространственно-временной динамики. Уравнения в частных производных типа реакция-диффузия-конвекция. Распространение волны в системах с диффузией.
Устойчивость однородных стационарных решений системы двух уравнений типа реакция-диффузия. Неустойчивость Тьюринга. Диссипативные структуры вблизи порога неустойчивости. Локализованные диссипативные структуры. Типы пространственно-временных режимов. |