Система двух линейных дифференциальных уравнений

\begin{cases} \frac{\displaystyle dx}{\displaystyle dt} = a x + b y \\ \frac{\displaystyle dy}{\displaystyle dt} = c x + d y \end{cases} $$ \sigma = a + d $$ $$ \Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = a d - b c $$ $$ \lambda^2 - \sigma \lambda + \Delta = 0 $$ $$ \lambda_{1,2} = \frac{\sigma}{2} \pm \sqrt{\frac{\sigma^2}{4} - \Delta} $$
Счёт: