Галина
Юрьевна
Ризниченко

Курс лекций «Математические модели в биологии»

Лекции прочитаны в аудитории ББА в 1055 по понедельникам с сентября по декабрь 2023 года.


4 сентября. Лекция 1. Введение. От экспоненты Мальтуса к биологии систем. Модели биологических систем, описываемые одним дифференциальным уравнением первого порядка

Часть 1. Введение. От экспоненты Мальтуса к биологии систем.

Понятие модели. Объекты, цели и методы моделирования. Модели в разных науках. Компьютерные и математические модели. История первых моделей в биологии. Современная классификация моделей биологических процессов. Регрессионные, имитационные, качественные модели. Принципы имитационного моделирования и примеры моделей. Специфика моделирования живых систем.

Часть 2. Модели биологических систем, описываемые одним дифференциальным уравнением первого порядка.

Модели, приводящие к одному дифференциальному уравнению. Понятие решения одного автономного дифференциального уравнения. Стационарное состояние (состояние равновесия). Устойчивость состояния равновесия. Методы оценки устойчивости.

Эпиграф: На краю земли

11 сентября. Лекция 2. Модели роста популяций (1)

Непрерывные модели популяционной динамики: экспоненциальный рост, логистический рост, модели с наименьшей критической численностью. Модель роста человечества. Модели с неперекрывающимися поколениями. Дискретное логистическое уравнение. Диаграмма и лестница Ламерея. Типы решений при разных значениях параметра: монотонные и затухающие решения, циклы, квазистохастическое поведение, вспышки численности.

18 сентября Лекция 3. Модели роста популяций (2). Матричные модели популяций. Базовые модели математической биологии, представленные двумя автономными уравнениями (1)

Часть 1. Модели роста популяций (2). Матричные модели популяций.

Матричные модели популяций. Влияние запаздывания. Вероятностные модели популяций. Матричные модели популяций

Часть 2. Базовые модели математической биологии, представленные двумя автономными уравнениями (1).

Фазовая плоскость. Фазовый портрет. Метод изоклин. Главные изоклины. Устойчивость стационарного состояния. Линейные системы.

Эпиграф: Щелезубы

25 сентября Лекция 4. Базовые модели математической биологии, представленные двумя автономными уравнениями (2)

Типы особых точек: узел, седло, фокус, центр. Метод Ляпунова линеаризации систем в окрестности стационарного состояния. Метод функции Ляпунова. Примеры исследования устойчивости стационарных состояний моделей биологических систем. Химические реакции первого порядка.

Эпиграф: Болеро

2 октября Лекция 5. Базовые модели математической биологии, представленные двумя автономными уравнениями (3)

Примеры исследования устойчивости стационарных состояний моделей биологических систем. Нелинейные уравнения. Уравнения Лотки. Уравнения Вольтерра.

Эпиграф: La grande migration

9 октября Лекция 6. Мультистационарные системы. Типы бифуркаций. Катастрофы

Триггер. Примеры систем с двумя устойчивыми стационарными состояниями. Силовое и параметрическое переключение триггера. Эволюция. Отбор одного из двух и нескольких равноправных видов. Конкуренция двух видов в случае неограниченного и ограниченного роста. Генетический триггер Жакоба и Моно. Бифуркации динамических систем. Типы бифуркаций. Бифуркационные диаграммы и фазопараметрические портреты. Катастрофы.

16 октября Контрольная работа №1 (письменно)


Эпиграф: 5/4

23 октября Лекция 7. Проблема быстрых и медленных переменных. Теорема Тихонова

Метод квазистационарных концентраций. Теорема Тихонова. Уравнение Михаэлиса-Ментен. Формула Моно. Конкуренция двух видов, питающихся одинаковым субстратом.

Эпиграф: Nature by Numbers

30 октября Лекция 8. Колебания в биологических системах

Понятие автоколебаний. Изображение поведения автоколебательной системы на фазовой плоскости. Предельные циклы. Условия существования предельных циклов. Рождение предельного цикла. Бифуркация Андронова-Хопфа. Мягкое и жесткое возбуждение колебаний. Модель Брюсселятор. Примеры автоколебательных моделей процессов в живых системах. Колебания в темновых процессах фотосинтеза. Автоколебания в модели гликолиза. Внутриклеточные колебания концентрации кальция.

13 ноября Контрольная работа №2 (письменно)


20 ноября Лекция 9. Динамический хаос. Модели биологических сообществ. Фракталы

Основные понятия теории динамических систем. Предельные множества. Аттракторы. Странные аттракторы. Динамический хаос. Линейный анализ устойчивости траекторий. Диссипативные системы. Устойчивость хаотических решений. Размерность странных аттракторов. Стационарные состояния и динамические режимы в сообществе из трех видов. Динамический хаос в моделях взаимодействия видов. Трофические системы с фиксированным количеством вещества. Модель системы четырех биологических видов.

Фракталы и фрактальная размерность. Кривая Коха. Треугольник и салфетка Серпинского. Канторово множество. Канторов стержень, чертова лестница. Примеры фрактальных множеств в живых системах. Формирование крон деревьев. Альвеолы легких. Мембраны митохондрий.

Эпиграф: Медвежуть

27 ноября Лекция 10. Модели взаимодействия видов. Агентные модели

Модели взаимодействия видов. Гипотезы Вольтерра. Аналогии с химической кинетикой. Вольтерровские модели взаимодействий. Классификация типов взаимодействий. Конкуренция. Хищник-жертва. Обобщенные модели взаимодействия видов. Модель Колмогорова. Модель взаимодействия двух видов насекомых МакАртура.

Пространственно-временные агентные модели взаимодействия видов.

4 декабря Лекция 11. Моделирование микробных популяций. Модели эпидемий

Моделирование микробных популяций. Микробные популяции как объект моделирования и управления. Непрерывная культура микроорганизмов. Модель Моно. Микроэволюционные процессы в микробных популяциях. Возрастные распределения. Двухвозрастная модель. Непрерывные возрастные распределения.

Модели эпидемий. Эпидемия в замкнутой популяции. Эпидемиологическая кривая. Классическая модель SIR. Базовое репродуктивное число инфекции. Модель COVID-19.

11 декабря Лекция 12. Распределенные биологические системы

Уравнение реакция-диффузия. Почему возникают периодические структуры и волны. ААктивные кинетические среды в живых системах. Проблема формообразования. Распространение волн возбуждения. Пространственные структуры и автоволновые процессы в химических и биохимических реакциях.

Уравнение диффузии. Начальные и граничные условия. Решение уравнения диффузии. Решение однородного уравнения диффузии с нулевыми граничными условиями. Метод разделения переменных. Собственные значения и собственные функции задачи Штурма-Лиувилля. Решение неоднородного уравнения с нулевыми начальными условиями. Решение общей краевой задачи. Линейный анализ устойчивости гомогенных стационарных решений одного уравнения типа реакция-диффузия.

Устойчивость однородных стационарных решений системы двух уравнений типа реакция-диффузия. Диссипативные структуры. Линейный анализ устойчивости гомогенного стационарного состояния. Зависимость вида неустойчивости от волнового числа. Неустойчивость Тьюринга. Линейный анализ устойчивости гомогенного стационарного состояния распределенного Брюсселятора. Диссипативные структуры вблизи порога неустойчивости. Локализованные диссипативные структуры. Линейный анализ системы реакция-электродиффузия. Типы пространственно-временных режимов.

Распределенные триггеры и морфогенез. Модели раскраски шкур животных. Дифференциация и морфогенез. Модель генетического триггера с диффузией (Чернавский и др.). Исследование устойчивости гомогенного стационарного состояния. Генетический триггер с учетом диффузии субстратов. Модель гидры Гирера-Майнхардта. Моделирование раскраски шкур животных. Модели агрегации амеб.

18 декабря Лекция 13. Распространение импульсов, фронтов и волн

Распространение импульсов, фронтов и волн. Модель распространения фронта волны Петровского-Колмогорова-Пискунова-Фишера. Взаимодействие процессов размножения и диффузии. Локальные функции размножения. Автомодельная переменная. Распространение амброзиевого листоеда.

Модели распространения нервного импульса. Автоволновые процессы и сердечные аритмии. Распространение нервного импульса. Опыты и модель Ходчкина-Хаксли. Редуцированная модель ФитцХью-Нагумо. Возбудимый элемент локальной системы. Подпороговое и надпороговое возбуждение. Бегущие импульсы. Детальные модели кардиоцитов. Аксиоматические модели возбудимой среды. Автоволновые процессы и сердечные аритмии.

Реакция Белоусова-Жаботинского – базовая модель нелинейного пространственно-временного поведения. Модель образования зон кислотного и щелочного рН вдоль мембраны клеточной водоросли Chara corallina.


Архив